
Key Words

- 1. Independent Events results for which the outcome of one event has no effect on the other event.
- 2. **Probability** the likelihood or chance of an event occurring.
- 3. Outcome the result in a probability experiment
- 4. Favorable Outcome the successful result in a probability experiment.
- 5. Sample Space all possible outcomes of a probability experiment.

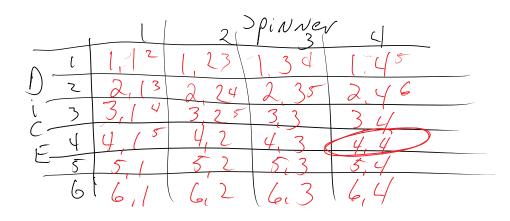
Tree Diagram

SHIRTS	PANTS	OUTFIT		
	Gray	White shirt, gray pants		
	Green	White shirt, green pants		
/ White	Black	White shirt, black pants		
/	Blue	White shirt, blue pants		
/	Gray	Blue shirt, gray pants		
Blue	Green	Blue shirt, green pants		
Blue	- Black	Blue shirt, black pants		
//	Blue	Blue shirt, blue pants		
1/	Gray	Green shirt, gray pants		
	Green	Green shirt, green pants Green shirt, black pants		
Green <	Black			
	Blue	Green shirt, blue pants		
	Gray	Red shirt, gray pants		
Red €	Green	Red shirt, green pants		
, Ked	Black	Red shirt, black pants		
\	Blue	Red shirt, blue pants		
\	Gray	Striped shirt, gray pants		
\	Green	Striped shirt, green pants		
Striped	- Black	Striped shirt, black pants		
	Blue	Striped shirt, blue pants		

Tree Diagram

Table Diagram

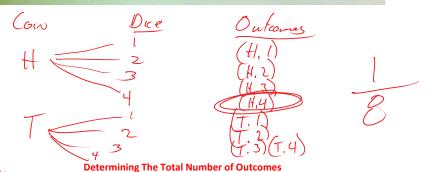
		White Die							
		1	2	3	4	5	6		
Red Die	1	(1, <mark>1</mark>)	(2,1)	(3,1)	(4,1)	(5, <mark>1</mark>)	(6, <mark>1</mark>)		
	2	(1,2)	(2,2)	(3,2)	(4,2)	(5, <mark>2</mark>)	(6,2)		
	3	(1,3)	(2,3)	(3,3)	(4,3)	(5,3)	(6,3)		
	4					(5,4)			
	5	(1,5)	(2,5)	(3,5)	(4,5)	(5, <mark>5</mark>)	(6,5)		
	6	(1,6)	(2,6)	(3,6)	(4,6)	(5,6)	(6,6)		


A spinner is divided into four equal regions as shown. You spin this spinner and roll a standard six-sided die once each.

- a) Create a table to show the sample space.
- **b)** What is P(4, 4)?
- c) What is P(sum > 5)?

24(12)

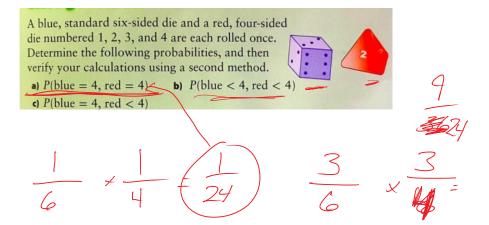
5 pinner 4



Ellen flips a coin and rolls a four-sided die numbered 1, 2, 3, and 4.

a) What is the sample space? Use a tree diagram to show how you got your answer.

b) What is P(H, 4)?



Create a table or tree diagram
 Use multiplication

Example 2: Determine the Total Number of Outcomes From Three or More Events
A coin is flipped, a spinner divided into three equal regions is spun, and a four-sided die numbered 1, 2, 3, and 4 is rolled.

a) How many possible outcomes are there?
b) Why could you not easily represent the sample space for this probability experiment with a table?

2 x 3 x 4 - (24)

Chapter 11 Probability

3, 4, 6,

11.2 - Page 423

3, 5, 10

11.3 - Page 432

5, 6, 7